Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of the deposition process and substrate temperature on the microstructure defects and electrical conductivity of molybdenum thin films

Identifieur interne : 000E54 ( Main/Repository ); précédent : 000E53; suivant : 000E55

Effect of the deposition process and substrate temperature on the microstructure defects and electrical conductivity of molybdenum thin films

Auteurs : RBID : Pascal:13-0162247

Descripteurs français

English descriptors

Abstract

The effect of point defects, dislocations and grain boundaries on the electron scattering in molybdenum thin films having a constant thickness of 500 nm was described quantitatively in form of a dependence of the electrical resistivity on the concentration of impurity atoms, stress-free lattice parameter, microstrain and grain size. The concentration of impurity atoms and the dislocation density were modified by depositing the Mo thin films using different techniques (DC magnetron sputtering, pulsed DC magnetron sputtering and RF magnetron sputtering) and by varying the substrate temperature (25 °C, 150 °C, 250 °C and 350 °C). As expected, the electrical resistivity of the Mo films decreased with decreasing density of microstructure defects. For all deposition methods, the dislocation density decreased with increasing substrate temperature, which led to an overall decrease of the measured resistivity with increasing substrate temperature. Due to the deposition equipment constraints during the RF sputtering, up to 3 at.% of Fe, Cr and Ni were incorporated at the regular lattice positions in the crystal structure of molybdenum, which increased the resistivity of the Mo films nearly two times as compared to the DC and pulsed DC sputtered films.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0162247

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of the deposition process and substrate temperature on the microstructure defects and electrical conductivity of molybdenum thin films</title>
<author>
<name sortKey="Rafaja, D" uniqKey="Rafaja D">D. Rafaja</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials Science, TU Bergakademie Freiberg</s1>
<s2>09599 Freiberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>09599 Freiberg</wicri:noRegion>
<wicri:noRegion>TU Bergakademie Freiberg</wicri:noRegion>
<wicri:noRegion>09599 Freiberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kostenbauer, H" uniqKey="Kostenbauer H">H. Köstenbauer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Plansee SE</s1>
<s2>6600 Reutte</s2>
<s3>AUT</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Plansee SE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="M Hle, U" uniqKey="M Hle U">U. M Hle</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials Science, TU Bergakademie Freiberg</s1>
<s2>09599 Freiberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>09599 Freiberg</wicri:noRegion>
<wicri:noRegion>TU Bergakademie Freiberg</wicri:noRegion>
<wicri:noRegion>09599 Freiberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Loffler, C" uniqKey="Loffler C">C. Löffler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials Science, TU Bergakademie Freiberg</s1>
<s2>09599 Freiberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>09599 Freiberg</wicri:noRegion>
<wicri:noRegion>TU Bergakademie Freiberg</wicri:noRegion>
<wicri:noRegion>09599 Freiberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schreiber, G" uniqKey="Schreiber G">G. Schreiber</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials Science, TU Bergakademie Freiberg</s1>
<s2>09599 Freiberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>09599 Freiberg</wicri:noRegion>
<wicri:noRegion>TU Bergakademie Freiberg</wicri:noRegion>
<wicri:noRegion>09599 Freiberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kathrein, M" uniqKey="Kathrein M">M. Kathrein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Plansee SE</s1>
<s2>6600 Reutte</s2>
<s3>AUT</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Plansee SE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Winkler, J" uniqKey="Winkler J">J. Winkler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Plansee SE</s1>
<s2>6600 Reutte</s2>
<s3>AUT</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>Plansee SE</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0162247</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0162247 INIST</idno>
<idno type="RBID">Pascal:13-0162247</idno>
<idno type="wicri:Area/Main/Corpus">000E77</idno>
<idno type="wicri:Area/Main/Repository">000E54</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cathode sputtering</term>
<term>Chromium</term>
<term>Copper selenides</term>
<term>Crystal defects</term>
<term>Crystal structure</term>
<term>Defect density</term>
<term>Deposition process</term>
<term>Dislocation density</term>
<term>Dislocations</term>
<term>Electric resistivity</term>
<term>Electrical conductivity</term>
<term>Electron scattering</term>
<term>Equipment</term>
<term>Gallium selenides</term>
<term>Grain boundaries</term>
<term>Grain size</term>
<term>Indium selenides</term>
<term>Iron</term>
<term>Lattice parameters</term>
<term>Light emitting diodes</term>
<term>Microstructure</term>
<term>Molybdenum</term>
<term>Nickel</term>
<term>Physical vapor deposition</term>
<term>Point defects</term>
<term>Quantity ratio</term>
<term>Radiofrequency sputtering</term>
<term>Sputter deposition</term>
<term>Sputtering</term>
<term>Stress effects</term>
<term>Temperature dependence</term>
<term>Thin films</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Procédé dépôt</term>
<term>Dépendance température</term>
<term>Microstructure</term>
<term>Conductivité électrique</term>
<term>Couche mince</term>
<term>Défaut ponctuel</term>
<term>Dislocation</term>
<term>Joint grain</term>
<term>Défaut cristallin</term>
<term>Diffusion électron</term>
<term>Résistivité électrique</term>
<term>Effet concentration</term>
<term>Effet contrainte</term>
<term>Paramètre cristallin</term>
<term>Molybdène</term>
<term>Fer</term>
<term>Chrome</term>
<term>Nickel</term>
<term>Séléniure de cuivre</term>
<term>Structure cristalline</term>
<term>Grosseur grain</term>
<term>Densité dislocation</term>
<term>Pulvérisation cathodique</term>
<term>Dépôt physique phase vapeur</term>
<term>Pulvérisation haute fréquence</term>
<term>Dépôt pulvérisation</term>
<term>Densité défaut</term>
<term>Diode électroluminescente</term>
<term>Equipement</term>
<term>Pulvérisation irradiation</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Diffraction RX</term>
<term>Mo</term>
<term>6855A</term>
<term>6855J</term>
<term>7361</term>
<term>6172J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Molybdène</term>
<term>Fer</term>
<term>Chrome</term>
<term>Nickel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of point defects, dislocations and grain boundaries on the electron scattering in molybdenum thin films having a constant thickness of 500 nm was described quantitatively in form of a dependence of the electrical resistivity on the concentration of impurity atoms, stress-free lattice parameter, microstrain and grain size. The concentration of impurity atoms and the dislocation density were modified by depositing the Mo thin films using different techniques (DC magnetron sputtering, pulsed DC magnetron sputtering and RF magnetron sputtering) and by varying the substrate temperature (25 °C, 150 °C, 250 °C and 350 °C). As expected, the electrical resistivity of the Mo films decreased with decreasing density of microstructure defects. For all deposition methods, the dislocation density decreased with increasing substrate temperature, which led to an overall decrease of the measured resistivity with increasing substrate temperature. Due to the deposition equipment constraints during the RF sputtering, up to 3 at.% of Fe, Cr and Ni were incorporated at the regular lattice positions in the crystal structure of molybdenum, which increased the resistivity of the Mo films nearly two times as compared to the DC and pulsed DC sputtered films.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>528</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of the deposition process and substrate temperature on the microstructure defects and electrical conductivity of molybdenum thin films</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 39th International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2012), San Diego, California (USA), April 23-27, 2012</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>RAFAJA (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KÖSTENBAUER (H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MÜHLE (U.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LÖFFLER (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SCHREIBER (G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KATHREIN (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WINKLER (J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ABADIAS (Gregory)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>AOUADI (Samir)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>PETROV (Ivan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>REBHOLZ (Claus)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>STÜBER (Michael)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>VEPREK (Stan)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Materials Science, TU Bergakademie Freiberg</s1>
<s2>09599 Freiberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Plansee SE</s1>
<s2>6600 Reutte</s2>
<s3>AUT</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Poitiers - Institut P', Department Physique et Mécanique des Matériaux, SP2MI, Teleport 2, Bd. Marie et Pierre Curie</s1>
<s2>86982 Chasseneuil Futuroscope</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Southern Illinois University Carbondale, Department of Physics, 1245 Lincoln Drive, Neckers 483 A</s1>
<s2>Carbondale, IL 62901-4401</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Cyprus, Mechanical & Manufacturing Engineering, 75 Kallipoleos Street</s1>
<s2>1678 Nicosia</s2>
<s3>CYP</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1</s1>
<s2>76344 Eggenstein-Leopoldshafen</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>Technical University Munich, Department of Chemistry, Lichtenbergstrasse 4</s1>
<s2>85747 Garching</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>American Vacuum Society (AVS). Surface Engineering Division (ASED)</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>42-48</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000503724740070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0162247</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of point defects, dislocations and grain boundaries on the electron scattering in molybdenum thin films having a constant thickness of 500 nm was described quantitatively in form of a dependence of the electrical resistivity on the concentration of impurity atoms, stress-free lattice parameter, microstrain and grain size. The concentration of impurity atoms and the dislocation density were modified by depositing the Mo thin films using different techniques (DC magnetron sputtering, pulsed DC magnetron sputtering and RF magnetron sputtering) and by varying the substrate temperature (25 °C, 150 °C, 250 °C and 350 °C). As expected, the electrical resistivity of the Mo films decreased with decreasing density of microstructure defects. For all deposition methods, the dislocation density decreased with increasing substrate temperature, which led to an overall decrease of the measured resistivity with increasing substrate temperature. Due to the deposition equipment constraints during the RF sputtering, up to 3 at.% of Fe, Cr and Ni were incorporated at the regular lattice positions in the crystal structure of molybdenum, which increased the resistivity of the Mo films nearly two times as compared to the DC and pulsed DC sputtered films.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A72J</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Procédé dépôt</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Deposition process</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Défaut ponctuel</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Point defects</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dislocation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Dislocations</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diffusion électron</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electron scattering</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Difusión electrón</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Résistivité électrique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Electric resistivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Chrome</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Chromium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Nickel</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Nickel</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Grosseur grain</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Grain size</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Densité dislocation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Dislocation density</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Pulvérisation haute fréquence</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Radiofrequency sputtering</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Pulverización alta frecuencia</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>35</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Densité défaut</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Defect density</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Densidad defecto</s0>
<s5>36</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
<s5>37</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Equipement</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Equipment</s0>
<s5>38</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>39</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>40</s5>
</fC03>
<fC03 i1="31" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>40</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>41</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>41</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>42</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>XRD</s0>
<s5>42</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>Mo</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>6855A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="38" i2="3" l="FRE">
<s0>6172J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>140</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ICMCTF 2012 International Conference on Metallurgical Coatings and Thin Films</s1>
<s2>39</s2>
<s3>San Diego, California USA</s3>
<s4>2012-04-23</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0162247
   |texte=   Effect of the deposition process and substrate temperature on the microstructure defects and electrical conductivity of molybdenum thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024